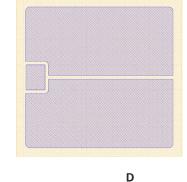
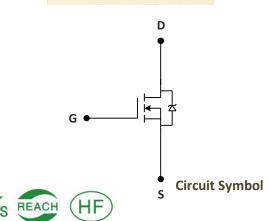


1200V Silicon Carbide MOSFET

Features

- Robust semiconductor material 1200V SiC
- IGBT compatible driving function
- Very good temperature related stability
- $75m\Omega$ R_{DS_ON} @ V_{GS}=20V
- High avalanche ruggedness
- JEDEC Qualified
- RoHS Compliant and Halogen Free


A	b	b	li	ca	ti	O	n	S
		_			٠.	_		_


- Solar inverters
- PFC
- Motor Drives
- High Voltage DC-DC Converter
- Induction Heating and Welding
- EV Charging
- Switch mode power supplies, UPS

Ordering Information

Part Number	Die Size (mm)			
PSMA1PVA2R75W	2.8*2.8			

Absolute Maximum Ratings

T_J=25°C, unless otherwise specified.

Symbol	Parameter	Rating	
V _{DSS}	Drain-to-Source Voltage	1200V	
V _{GSS}	Gate-to-Source Voltage	-10V/25V	
V _{GSS_OP}	Recommended Operational	-5V/20V	
ID	Continuous Drain Current @ V _{GS} =20V	35A	
	Continuous Drain Current @ V _{GS} =20V (T _C =100°C)	28A	
IDP	300us Pulsed Drain Current @ V _{GS} =20V		
Is	Diode Continuous Forward Current	35A	

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.

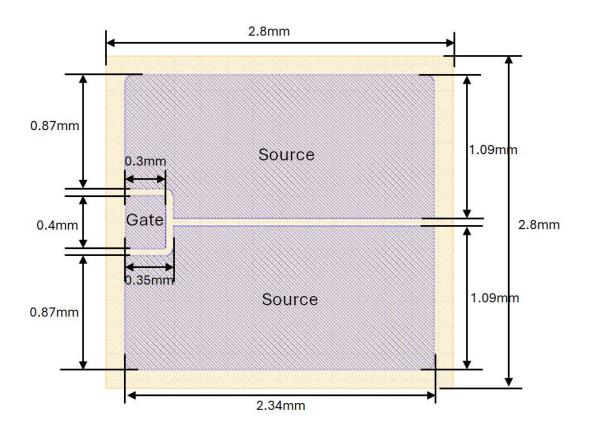
Electrical Specifications

T_J=25°C, unless otherwise specified.

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
DC Chara	octeristics	1			ı	1
BV _{DSS}	Drain-to-Source Breakdown Voltage	V _{GS} =0V, I _D =1mA	1200			V
l _{DSS} Drain-to-S		V _{DS} =1200V, V _{GS} =0V		0.1	10	uA
	Drain-to-Source Leakage Current	V _{DS} =1200V, V _{GS} =0V (T _J =175°C)		1		
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} =20V, V _{DS} =0V		10	100	- nA
		V _{GS} =-5V, V _{DS} =0V		-10	-100	
R _{DS_ON} Station	Static Drain-to-Source On-Resistance	V _{GS} =20V, I _D =35.6A		75	95	mΩ
		V _{GS} =20V, I _D =17.8A		72	90	
	Static Brain to Source on Resistance	V _{GS} =20V, I _D =20A (T _J =175°C)	-	120	-	
V _{GS_TH} _ (Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =17.8mA	2	3.0	4	V
		V _{DS} =V _{GS} , I _D =17.8mA (T _J =175°C)	-	2.1	-	
Body Dio	de Characteristics					
V _{SD}	Diode Forward Voltage	I _F =35.6A, V _{GS} =-5V		4.0		V

^{1.} Pulse test; pulse width≤300µs, duty cycle≤2%.

^{2.} All voltages are with respect to ground.


^{3.} The Rds_on characteristics were tested with the parts assembled in To-247-3L package

Mechanical Parameters

Parameter	Typical Value	Unit	
Die Dimensions (L x W)	2.8*2.8	mm	
Gate Pad Dimensions (L x W)	293*398	μm	
Die Thickness	175 ± 20	μm	
Top Side Source metallization (AlCu)	4.0	μm	
Top Side Gate metallization (AlCu)	4.0	μm	
Bottom Drain metallization (Ti/Ni/Ag)	0.1/0.3/1	μm	
Cut line	100	μm	

Chip Dimensions

NOTICE

The specifications and product information of ProAsia Semiconductor Corporation. are subject to change without any prior notice, and customer should contact ProAsia Semiconductor Corporation. to obtain the latest relevant information before placing orders and verify that such information is current and complete.

The information provided here is believed to be reliable and accurate; however ProAsia Semiconductor Corporation. makes no guarantee for any errors that appear in this document.

LIFE SUPPORT POLICY

The products of ProAsia Semiconductor Corporation. are not designed or authorized for use as critical components in life support devices or systems without the express written approval of the President of ProAsia Semiconductor Corporation. herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.